Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Article En | MEDLINE | ID: mdl-38431758

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


DNA Copy Number Variations , DiGeorge Syndrome , Gene Dosage , Magnetic Resonance Imaging , Humans , Female , Male , DNA Copy Number Variations/genetics , Adult , Adolescent , Child , Young Adult , Middle Aged , Child, Preschool , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , DiGeorge Syndrome/diagnostic imaging , Longitudinal Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/growth & development , Brain/diagnostic imaging , Brain/pathology , Brain/growth & development , Amygdala/diagnostic imaging , Amygdala/pathology , Thalamus/diagnostic imaging , Thalamus/growth & development , Thalamus/pathology , Organ Size
3.
Article En | MEDLINE | ID: mdl-37709253

BACKGROUND: The 22q11.2 deletion syndrome (22qDel) is a genetic copy number variant that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and the somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youths at clinical high risk for psychosis. Here, we used a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in participants with 22qDel and typically developing (TD) control participants. METHODS: TCC was calculated for 9 functional networks derived from resting-state functional magnetic resonance imaging scans collected from 65 participants with 22qDel (63.1% female) and 69 demographically matched TD control participants (49.3% female) ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Nonlinear age trajectories were characterized with generalized additive mixed models. RESULTS: In participants with 22qDel, TCC in the frontoparietal network increased until approximately age 13, while somatomotor TCC and cingulo-opercular TCC decreased from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD control participants. Somatomotor connectivity was significantly higher in participants with 22qDel than in TD control participants in childhood, but lower in late adolescence. Frontoparietal TCC showed the opposite pattern. CONCLUSIONS: 22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than control individuals, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.


DiGeorge Syndrome , Psychotic Disorders , Schizophrenia , Adolescent , Humans , Female , Adult , Child , Young Adult , Male , Cross-Sectional Studies , Cerebral Cortex/diagnostic imaging
4.
bioRxiv ; 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37961662

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.

5.
Autism Res ; 16(12): 2247-2262, 2023 12.
Article En | MEDLINE | ID: mdl-37997544

Rare genetic variants that confer large effects on neurodevelopment and behavioral phenotypes can reveal novel gene-brain-behavior relationships relevant to autism. Copy number variation at the 22q11.2 locus offer one compelling example, as both the 22q11.2 deletion (22qDel) and duplication (22qDup) confer increased likelihood of autism spectrum disorders (ASD) and cognitive deficits, but only 22qDel confers increased psychosis risk. Here, we used the Penn Computerized Neurocognitive Battery (Penn-CNB) to characterized neurocognitive profiles of 126 individuals: 55 22qDel carriers (MAge = 19.2 years, 49.1% male), 30 22qDup carriers (MAge = 17.3 years, 53.3% male), and 41 typically developing (TD) subjects (MAge = 17.3 years, 39.0% male). We performed linear mixed models to assess group differences in overall neurocognitive profiles, domain scores, and individual test scores. We found all three groups exhibited distinct overall neurocognitive profiles. 22qDel and 22qDup carriers showed significant accuracy deficits across all domains relative to controls (episodic memory, executive function, complex cognition, social cognition, and sensorimotor speed), with 22qDel carriers exhibiting more severe accuracy deficits, particularly in episodic memory. However, 22qDup carriers generally showed greater slowing than 22qDel carriers. Notably, slower social cognition speed was uniquely associated with increased global psychopathology and poorer psychosocial functioning in 22qDup. Compared to TD, 22q11.2 copy number variants (CNV) carriers failed to show age-associated improvements in multiple cognitive domains. Exploratory analyses revealed 22q11.2 CNV carriers with ASD exhibited differential neurocognitive profiles, based on 22q11.2 copy number. These results suggest that there are distinct neurocognitive profiles associated with either a loss or gain of genomic material at the 22q11.2 locus.


Autism Spectrum Disorder , DiGeorge Syndrome , Psychotic Disorders , Humans , Male , Young Adult , Adult , Adolescent , Female , DNA Copy Number Variations/genetics , DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Psychotic Disorders/genetics , Phenotype
6.
Curr Psychiatry Rep ; 25(10): 479-491, 2023 10.
Article En | MEDLINE | ID: mdl-37721640

PURPOSE OF REVIEW: To summarize current literature available on sleep in 22q11.2 Deletion Syndrome (22q11.2DS; Velocardiofacial or DiGeorge Syndrome), a neurogenetic disorder caused by a hemizygous deletion in a genomic region critical for neurodevelopment. Due to the greatly increased risk of developmental psychiatric disorders (e.g., autism and schizophrenia) in 22q11.2DS, this review focuses on clinical correlates of sleep disturbances and potential neurobiological underpinnings of these relationships. RECENT FINDINGS: Sleep disturbances are widely prevalent in 22q11.2DS and are associated with worse behavioral, psychiatric, and physical health outcomes. There are reports of sleep architecture and sleep neurophysiology differences, but the literature is limited by logistical challenges posed by objective sleep measures, resulting in small study samples to date. Sleep disturbances in 22q11.2DS are prevalent and have a substantial impact on well-being. Further investigation of sleep in 22q11.2DS utilizing multimodal sleep assessments has the potential to provide new insight into neurobiological mechanisms and a potential trans-diagnostic treatment target in 22q11.2DS.


Autistic Disorder , DiGeorge Syndrome , Schizophrenia , Sleep Wake Disorders , Humans , DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , DiGeorge Syndrome/diagnosis , Autistic Disorder/genetics , Schizophrenia/complications , Sleep Wake Disorders/genetics , Sleep Wake Disorders/complications
7.
Neuroimage ; 254: 119139, 2022 07 01.
Article En | MEDLINE | ID: mdl-35346841

Integrating motivational signals with cognition is critical for goal-directed activities. The mechanisms that link neural changes with motivated working memory continue to be understood. Here, we tested how externally cued and non-cued (internally represented) reward and loss impact spatial working memory precision and neural circuits in human subjects using fMRI. We translated the classic delayed-response spatial working memory paradigm from non-human primate studies to take advantage of a continuous numeric measure of working memory precision, and the wealth of translational neuroscience yielded by these studies. Our results demonstrated that both cued and non-cued reward and loss improved spatial working memory precision. Visual association regions of the posterior prefrontal and parietal cortices, specifically the precentral sulcus (PCS) and intraparietal sulcus (IPS), had increased BOLD signal during incentivized spatial working memory. A subset of these regions had trial-by-trial increases in BOLD signal that were associated with better working memory precision, suggesting that these regions may be critical for linking neural signals with motivated working memory. In contrast, regions straddling executive networks, including areas in the dorsolateral prefrontal cortex, anterior parietal cortex and cerebellum displayed decreased BOLD signal during incentivized working memory. While reward and loss similarly impacted working memory processes, they dissociated during feedback when money won or avoided in loss was given based on working memory performance. During feedback, the trial-by-trial amount and valence of reward/loss received was dissociated amongst regions such as the ventral striatum, habenula and periaqueductal gray. Overall, this work suggests motivated spatial working memory is supported by complex sensory processes, and that the IPS and PCS in the posterior frontoparietal cortices may be key regions for integrating motivational signals with spatial working memory precision.


Memory, Short-Term , Motivation , Animals , Brain Mapping , Humans , Magnetic Resonance Imaging , Memory, Short-Term/physiology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Reward
8.
J Abnorm Psychol ; 127(7): 695-709, 2018 Oct.
Article En | MEDLINE | ID: mdl-30335439

Reward processing and cognition are disrupted in schizophrenia (SCZ), yet how these processes interface is unknown. In SCZ, deficits in reward representation may affect motivated, goal-directed behaviors. To test this, we examined the effects of monetary reward on spatial working memory (WM) performance in patients with SCZ. To capture complimentary effects, we tested biophysically grounded computational models of neuropharmacologic manipulations onto a canonical fronto-parietal association cortical microcircuit capable of WM computations. Patients with SCZ (n = 33) and healthy control subjects (HCS; n = 32) performed a spatial WM task with 2 reward manipulations: reward cues presented prior to each trial, or contextually prior to a block of trials. WM performance was compared with cortical circuit models of WM subjected to feed-forward glutamatergic excitation, feed-forward GABAergic inhibition, or recurrent modulation strengthening local connections. Results demonstrated that both groups improved WM performance to reward cues presented prior to each trial (HCS d = -0.62; SCZ d = -1.0), with percent improvement correlating with baseline WM performance (r = .472, p < .001). However, rewards presented contextually before a block of trials did not improve WM performance in patients with SCZ (d = 0.01). Modeling simulations achieved improved WM precision through strengthened local connections via neuromodulation, or feed-forward inhibition. Taken together, this work demonstrates that patients with SCZ can improve WM performance to short-term, but not longer-term rewards-thus, motivated behaviors may be limited by strength of reward representation. A potential mechanism for transiently improved WM performance may be strengthening of local fronto-parietal microcircuit connections via neuromodulation or feed-forward inhibitory drive. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Memory, Short-Term/physiology , Reward , Schizophrenia , Schizophrenic Psychology , Spatial Memory/physiology , Adult , Female , Humans , Male , Neuropsychological Tests , Young Adult
9.
Elife ; 72018 10 25.
Article En | MEDLINE | ID: mdl-30355445

Background: Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown. Methods: We therefore conducted a double-blind, randomized, counterbalanced, cross-over studyduring which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT2A receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps. Results: LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans. Conclusions: Together, these results strongly implicate the 5-HT2A receptor in LSD's neuropharmacology. This study therefore pinpoints the critical role of 5-HT2A in LSD's mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics. Funding: Funded by the Swiss National Science Foundation, the Swiss Neuromatrix Foundation, the Usona Institute, the NIH, the NIAA, the NARSAD Independent Investigator Grant, the Yale CTSA grant, and the Slovenian Research Agency. Clinical trial number: NCT02451072


The psychedelic drug LSD alters thinking and perception. Users can experience hallucinations, in which they, for example, see things that are not there. Colors, sounds and objects can appear distorted, and time can seem to speed up or slow down. These changes bear some resemblance to the changes in thinking and perception that occur in certain psychiatric disorders, such as schizophrenia. Studying how LSD affects the brain could thus offer insights into the mechanisms underlying these conditions. There is also evidence that LSD itself could help to reduce the symptoms of depression and anxiety disorders. Preller et al. have now used brain imaging to explore the effects of LSD on the brains of healthy volunteers. This revealed that LSD reduced communication among brain areas involved in planning and decision-making, but it increased communication between areas involved in sensation and movement. Volunteers whose brains showed the most communication between sensory and movement areas also reported the strongest effects of LSD on their thinking and perception. Preller et al. also found that another drug called Ketanserin prevented LSD from altering how different brain regions communicate. It also prevented LSD from inducing changes in thinking and perception. Ketanserin blocks a protein called the serotonin 2A receptor, which is activated by a brain chemical called serotonin that, amongst other roles, helps to regulate mood. By mapping the location of the gene that produces the serotonin 2A receptor, Preller et al. showed that the receptor is present in brain regions that show altered communication after LSD intake, therefore pinpointing the importance of this receptor in the effects of LSD. Psychiatric disorders that produce psychotic symptoms affect vast numbers of people worldwide. Further research into how LSD affects the brain could help us to better understand how such symptoms arise, and may also lead to the development of more effective treatments for a range of mental health conditions.


Hallucinogens/metabolism , Lysergic Acid Diethylamide/metabolism , Neural Pathways/drug effects , Serotonin 5-HT2 Receptor Antagonists/metabolism , Thalamus/drug effects , Adult , Cross-Over Studies , Double-Blind Method , Female , Healthy Volunteers , Humans , Male , Placebos/administration & dosage , Young Adult
...